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Abstract

We present a theory of scan statistics on hypergraphs
and apply the methodology to a time series of email
data. This approach is of interest because a hypergraph
is better suited to email data than a graph. This is
due to the fact that a hypergraph can contain all the
recipients of a message in a single hyperedge rather than
treating each recipient separately in a graph. The result
shows that scan statistics on hypergraphs can detect
certain anomalies that are not apparent by using scan
statistics on graphs. We will discuss our methodology
in detail and provide an example of anomaly detection
using this technique on a time series of Enron email
data.

1 Introduction

In Priebe et al. [14], we introduced a theory of scan
statistics on graphs and applied the idea to the prob-
lem of anomaly detection in a time series graphs. One
example to keep in mind is a communications graph, in
which the vertices of the graph represent people or com-
puters and the edges correspond to communications be-
tween the entities. In [14], we tested the null hypothesis
of “homogeneity” against alternatives suggesting “local
subregions of excessive activity.”

However, there is a limitation in the graph model,
where each edge can connect only two vertices [16]. This
is clearly a problem; for example, an email message may
have more than one recipient with multiple addresses in
the “To:” field or may have non-empty “Cc:” or “Bcc:”
fields. One way to represent this kind of message in a
graph is to use individual edge for each (from, recipient)
pair, but then an extra bit of information is necessary
to identify edges associated with the same message. A
better solution for this is a hypergraph, a generalized
graph where edges can connect any number of vertices.

In this paper, we extend the methodology of [14]
to hypergraphs and compare this extension with the
original theory. Section 2 of this paper presents a
background of scan statistics and its application to
graphs and hypergraphs, section 3 introduces time series
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graphs and hypergraphs, section 4 explains how we
generate hypergraphs from the Enron email dataset and
a couple of experiments are shown. We conclude the
paper with discussion in section 5.

2 Scan Statistics

Scan statistics are commonly used to investigate an in-
stantiation of a random field X (a spatial point pattern,
perhaps, or an image of pixel values) for the possible
presence of a local signal. Known in the engineering
literature as “moving window analysis”, the idea is to
scan a small window over the data, calculating some
local statistic (number of events for a point pattern,
perhaps, or average pixel value for an image) for each
window. The supremum or maximum of these locality
statistics is known as the scan statistic, denoted M(X).
Under some specified “homogeneity” null hypothesis H0

on X (Poisson point process, perhaps, or Gaussian ran-
dom field) the approach entails specification of a critical
value cα such that PH0

[M(X) ≥ cα] = α. If the max-
imum observed locality statistic is larger than or equal
to cα, then the inference can be made that there exists
a nonhomogeneity — a local region with statistically
significant signal.

An intuitive approach to testing these hypotheses
involves the partitioning of the region X into disjoint
subregions. For cluster detection in spatial point pro-
cesses this dates to Fisher’s 1922 “quadrant counts” [8];
see [7]. Absent prior knowledge of the location and
geometry of potential nonhomogeneities, this approach
can have poor power characteristics.

Analysis of the univariate scan process (d = 1)
has been considered by many authors, including [10],
[4], [5], and [9]. For a few simple random field models
exact p−values are available; many applications require
approximations to the p−value. The generalization to
spatial scan statistics is considered in [10], [1], [9], and
[3]. As noted by [6], exact results for d = 2 have
proved elusive; approximations to the p−value based on
extreme value theory are in general all that is available.
[11] present an alternative approach, using importance
sampling, to this problem of p−value approximation.



2.1 Scan Statistics on Graphs Consider a directed
graph (digraph) D with vertex set V (D) and arc set
A(D) of directed edges. The order of the digraph,
n = |V (D)|, is the number of vertices. The size
of the digraph, |A(D)|, is the number of arcs. For
v, w ∈ V (D) the digraph distance d(v, w) is defined to
be the minimum directed path length from v to w in D.

For non-negative integer k (the scale) and vertex
v ∈ V (D) (the location), consider the closed kth-order
neighborhood of v in D, denoted Nk[v; D] = {w ∈
V (D) : d(v, w) ≤ k}. We define the scan region to
be the induced subdigraph thereof, denoted

Ω(Nk[v; D]),

with vertices V (Ω(Nk[v; D])) = Nk[v; D] and arcs
A(Ω(Nk[v; D])) = {(v, w) ∈ A(D) : v, w ∈ Nk[v; D]}. A
locality statistic at location v and scale k is any specified
digraph invariant Ψk(v) of the scan region Ω(Nk[v; D]).
For concreteness consider for instance the size invari-
ant, Ψk(v) = |A(Ω(Nk[v; D]))|. Notice, however, that
any digraph invariant (e.g. density, domination number,
etc.) may be employed as the locality statistic, as dic-
tated by application. The “scale-specific” scan statistic

Mk(D) is given by some function of the collection of
locality statistics {Ψk(v)}v∈V (D); consider for instance
the maximum locality statistic over all vertices,

Mk(D) = max
v∈V (D)

Ψk(v).

This idea is introduced in [15].
Under a null model for the random digraph D (for

instance, the Erdös-Rényi random digraph model) the
variation of Ψk(v) can be characterized and Mk(D)
large indicates the existence of an induced subdigraph
(scan region) Ω(Nk[v; D]) with excessive activity. A test
can be constructed for a specific alternative of interest
concerning the structure of the excessive activity antic-
ipated. However, if the anticipated alternative is, more
generally, some form of “chatter” in which one (small)
subset of vertices communicate amongst themselves (in
either a structured or an unstructured manner) then our
scan statistic approach promises more power than other
approaches.

2.2 Scan Statistics on Hypergraphs Hyper-
graphs are a generalization of graphs, in which general-
ized edges (called hyperedges) may connect more than
two vertices. A hypergraph H = (V, E) consists of a
set of vertices (or nodes) V = {v1, v2, · · · , vn} and a set
of hyperedges E = {e1, e2, · · · , em}, with ei 6= ∅ and
ei ⊆ V for i = 1, · · · , m [2]. An example with n = 4
and m = 6 is depicted in Figure 1.

We may represent any hypergraph with a |V | × |E|
incidence matrix A = [aij ] such that aij ∈ {0, 1}, where

each row i is associated with a vertex vi and each column
j with a hyperedge ej . The incidence matrix for the
hypergraph depicted in Figure 1 is given by

A =

e1 e2 e3 e4 e5 e6

v1 1 1 0 0 0 1
v2 0 0 1 1 0 0
v3 1 0 1 0 1 1
v4 0 1 0 1 1 1

We are using following hypergraph definitions
throughout the paper:

1. The order of a hypergraph H , denoted order(H) =
|V | = n, is the number of vertices.

2. The size of a hypergraph H , denoted size(H) =
|E| = m, is the number of hyperedges,

3. The closed 1st-order neighborhood of v in H ,
denoted N1(v, H) =

⋃
ei∈E|v∈ei

ei,

4. The closed kth-order neighborhood of v in H ,
denoted Nk(v, H) =

⋃
w∈Nk−1(v,H)

N1(w, H), for k ≥

2,

5. The induced subgraph H(Nk, Ek), denoted
Ω(Nk(v, H)), where Ek = {ei ∈ E : ei ⊂ Nk},

The locality statistic at location v and scale k
for a hypergraph H is denoted by Ψk(v, H) =
size(Ω(Nk(v, H))), for k ≥ 1. When k = 0, we will
let it be a degree of vertex v, and Ψ0(v, H) = |{ei ∈ E :
v ∈ ei}|. That is,

1. The degree of vertex v for a hypergraph H , denoted
Ψ0(v, H) = |{ei ∈ E : v ∈ ei}| =

∑
v∈ei

(|ei| − 1),

where the cardinality of ei measures a weighted

size of ei, which is the number of vertices in the
hyperedge.

2. The locality statistic at vertex v and scale
k for a hypergraph H , denoted Ψk(v, H) =
size(Ω(Nk(v, H))) for k ≥ 1,

Note that hypergraphs provide more options for
using information about the size of the local region
than graphs do; for example, one could consider not
just the number of hyperedges, but some measure of
the cardinalities of the hyperedges themselves. We
will not concern ourselves with these here, except to
note that there may be cases, such as with email
hypergraphs discussed in Section 4, where one might



want to distinguish between local regions with the same
size, but with different cardinality hyperedges: one such
application might be to distinguish between emails to a
group and the same number of emails each to a single
individual.

The “scale-specific” scan statistic Mk(H) is given
by some function of the collection of locality statistics
{Ψk(v)}v∈V (H); consider for instance the maximum
locality statistic over all vertices,

Mk(H) = max
v∈V (H)

Ψk(v, H).

Let’s consider a following graph, which we will
introduce as an authorship graph for illustration; a
graph G = (V, E) consists of vertices (or authors)
V = {v1, v2, v3, v4} and edges (or papers) E =
{e1, e2, e3, e4, e5}, where ei = (vj , vk) means the pa-
per ei is written by authors vj and vk. The graph G
is shown in the top panel of Figure 1. When we cal-
culate scan statistic on G, Ψ0(G) = {2, 2, 3, 3}, and
Ψ1(G) = {3, 3, 5, 5}. Note that Ψk(v1, G) = Ψk(v2, G),
and Ψk(v3, G) = Ψk(v4, G) so it is not clear whether the
author v1 is the same person as v2 or not. (Note that
we know v3 6= v4 because there is an edge e5.) Mean-
while, let us add another paper written by coauthors v1,
v3, and v4 and call the resulting graph H . If we use an
unweighted graph as used in [14], H becomes identical
to G, and therefore it is still not possible to distinguish
v1 and v2. Considering H as a hypergraph H as shown
in the bottom panel of Figure 1, however, the statistics
are Ψ0(H) = {4, 2, 5, 5}1, and Ψ1(H) = {5, 3, 7, 7}, and
it is now clear that v1 6= v2.

3 Statistics and Time Series

Our time-dependent scale-k locality statistic on time
series hypergraph Ht is given by

Ψk,t(v, Ht) = size(Ω(Nk(v, Ht)))

for k ∈ {1, 2, · · · , K}. (We will let Ψ0,t(v) =
degree(v, Ht).) And, their corresponding scan statistics
are

Mk,t = max
v

Ψk,t(v, Ht); k = 0, 1, 2.

As mentioned in [14], these raw locality statistics
Ψk,t are standardized using vertex-dependent recent
history:

Ψ̃k,t = (Ψk,t(v) − µ̂k,t,τ (v))/ max(σ̂k,t,τ (v), 1)

1For example, the edges for the subgraph containing v1 are
(v1, v3), (v1, v4), and (v1, v3, v4), so Ψ0(v1, H) =

S

v∈ei

(|ei| − 1) =

1 + 1 + 2 = 4, and so on.

v1

v4 v3

v2

e1e2

e5

e3e4

v1

v4 v3

v2

e1e2

e5

e3e4

e6

Figure 1: Top: A simple graph G. Ψ0(v, G) =
{2, 2, 3, 3}, Ψ1(v, G) = {3, 3, 5, 5}. Note that
Ψk(v1, G) = Ψk(v2, G). Bottom: A corresponding hy-
pergraph H with an extra hyperedge e6 = {v1, v3, v4}.
Ψ0(v, H) = {4, 2, 5, 5}, Ψ1(v, H) = {5, 3, 7, 7}. Note
that Ψk(v1, H) 6= Ψk(v2, H).



where

µ̂k,t,τ (v) =
1

τ

t−1∑

t′=t−τ

Ψk,t′(v)

and

σ̂2
k,t,τ (v) =

1

τ − 1

t−1∑

t′=t−τ

(Ψk,t′(v) − µ̂k,t,τ (v))2.

That is, we standardize the local statistic Ψk,t(v) by a
vertex-dependent mean and standard deviation based
on recent history. The corresponding standardized scan
statistics are

M̃1,t = max
v

Ψ̃1,t(v).

For simplicity, we consider a temporally-normalized
version of M̃k,t,

Sk,t = (M̃k,t − µ̃k,t,ℓ)/ max(σ̃k,t,ℓ, 1),

where µ̃k,t,ℓ and σ̃k,t,ℓ are the running mean and stan-

dard deviation estimates of M̃t based on the most recent
ℓ time steps.

4 Experiments

The Enron email dataset [12, 13] is processed exactly
the same way as previously (also publicly available at
http://www.cis.jhu.edu/~parky/Enron) except that
edges are now hyperedges considering all recipients, that
is, in [14] emails sent “To”, “Cc”, and “Bcc” were
undistinguished, they are now all in one hyperedge.

For each week t = 1, · · · , 189, there is a hypergraph
Ht = (V, Et) with |V | = 184 vertices and hyperedges Et,
where {v1, · · · , vk} ∈ Et ⇔ vertices v1, · · · , vk consists
of the list of recipients and sender of at least one email
during the t-th week.

4.1 Experiment 1 Figure 2 shows the three scan
statistics (Ψk,t(v, Dt) and Ψk,t(v, Ht) for k = {0, 1, 2})
as well as the size for each of time series Enron graphs
(dashed lines) and hypergraphs (solid lines), as func-
tions of time (weeks) t = 1, · · · , 189 for the 189 weeks
under consideration.

First, we use raw locality scan statistics Ψk,t(v, Ht)
on time series Enron hypergraph Ht. Let ‖V ‖ = n.
For time t, let M(j) be order statistics, where j =
1, · · · , n. Then, M(n) = maxv Ψ(v, Ht) and v∗ =
{v s.t. Ψ(v, Ht) = M(n)} = arg maxv Ψ(v, Ht). Note
that v is not necessarily unique. Let k = kt be such that
M(k) = maxv∈v∗ Ψ(v, Ht). The value of kt will be the
maximum possible value kmax if argmaxv Ψ(v, Dt) =
argmaxv Ψ(v, Ht).

The Figure 3 depicts kt versus t. Detections are
defined here as weeks for which kt is less than kmax,

that is, the index of argmaxv Ψ(v, Dt) is much smaller
than arg maxv Ψ(v, Ht), kmax in this case. It shows that
there are three potential noticible detections at t∗ =
{116, 121, 169}, which are in January 2001, February
2001, and January 2002 respectively.
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Figure 2: Time series of scan statistics (Ψk,t(v, Dt) and
Ψk,t(v, Ht) for k = {0, 1, 2}) as well as graph size for
weekly Enron email graphs and hypergraphs (please see
the online colored version for better view).

4.2 Experiment 2 In Figure 4 we plot the standard-
ized scan statistics M̃1,t against t over the 189 weeks.
We use τ = 20 in this experiment.

Figure 5 depicts a temporally-normalized version
of M̃1,t, S1,t, based on the most recent ℓ time steps
(ℓ = 20 in this example). Detections are defined here as

time for which M̃1,t achieves a value greater than five
standard deviations above its mean, i.e., times t such
that S1,t > 5.

To compare with the original detection found in
[14], we look into the same period of time (a 20 week
period from February 2001 through June 2001), and the
zoomed-in plots are depicted in Figure 6. The figure
shows a detection (a standardized statistic M̃1,t which
achieves a value greater than 5 standard deviations
above its running mean, or a temporally-normalized
standardized statistic S1,t in this plot taking a value
greater than 5) at week t∗ = 130 in May 2001 for
a hypergraph, but not for a graph. Note that the
detection from S2,t(Dt) was t∗ = 132, while our new
detection using S1,t(Ht) is now t∗ = 130, both are in
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Figure 3: This plot depicts kt versus t for Ψ1,t(v, Dt)
and Ψ1,t(v, Ht). We consider t such that kt < kmax

as detections. There are three potential noticible de-
tections at t∗ = {116, 121, 169}, which are in January
2001, February 2001, and January 2002, shown in red
dotted lines.

May 2001. Recall that the former uses directed graphs
while the latter uses undirected hypergraphs. That is,
an email to r people in the directed graph causes a
different effect from an email among r people in the
undirected hypergraph; there is no degree change for r
recipients in the former (because those messages are all
incoming edges from the recipients point of view) while
all r+1 people will get their degrees increased by r from
a single hyperedge in the latter.

Figure 7 shows the locality statistics Ψ1(v, Ht) on
hypergraph as a function of Ψ1(v, Dt) on a graph at
week 130. Each data point represents an employee id.
The points further away from the dotted line are the
ones we are interested in, e.g., employees 79 and 97.

As we can see from Figures 8 and 9, locality
statistics Ψ1({79, 97}, Ht) show anomalous behavior at
t∗ = 130.

Figure 10 shows the similar plot as Figure 7 except
that it’s plotting Ψ̃1(v, Ht) versus Ψ̃1(v, Dt). It shows
that employees 17 and 76 are of interest, and their
behaviors are shown in Figures 11 and 12.

5 Discussion

We demonstrated the extended work of scan statistics
on hypergraph in this paper.
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Figure 4: Time series of standardized scan statistics
M̃1,t(Dt) and M̃1,t(Ht) for weekly Enron email graphs
and hypergraphs.
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weekly Enron email graphs. The dotted horizontal line
shows five standard deviations above a running mean.
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Figure 8: Locality statistics Ψ1(79, Ht) during a period
of 20 weeks in 2001, which is shown in red solid line
(the black dotted line is Ψ1(79, Dt)). It shows a sudden
value increase at t∗ = 130 in May 2001.
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Figure 9: Locality statistics Ψ1(97, Ht) during a period
of 20 weeks in 2001, which is shown in red solid line
(the black dotted line is Ψ1(97, Dt)). It shows a sudden
value increase at t∗ = 130 in May 2001.
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Figure 11: Locality statistics Ψ̃1(17, Ht) during a period
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black dotted line is Ψ̃1(17, Dt)). It shows a sudden value
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black dotted line is Ψ̃1(76, Dt)). It shows a sudden value
increase at t∗ = 130 in May 2001.



Much remains to be done; of particular interest is
the extension of these scan statistics to weighted graphs
and hypergraphs, allowing for the detection of anomalies
related to the number of messages sent, as opposed to
the simpler case considered in this paper. A directed
version of hypergraph is also essential. A definition of
directed hypergraph and an example of scan statistics
using a directed hypergraph is presented in Appendix.

Another important extension will be a content anal-

ysis along with a context analysis. After extracting
features from corpus, clustering and document summa-
rization methods can be applied to expose the topics

within the region of time-series communication network,
then these topic information can be used for detection
of anomalies as time changes.

A Appendix

A.1 Directed Hypergraph A directed hypergraph
HD = (V,A) consists of a set of vertices V =
{v1, · · · , vn} and a set of directed hyperedges A =
{e1, · · · , em} with ei 6= ∅. A directed hyperedge or hy-
perarc ei is an ordered pair, ei = (H, T ), of disjoint
subsets of vertices; T ⊆ V is the tail while H ⊆ V is the
head of ei and T ∩H = ∅ (we do not allow a self loop).
We may represent any directed hypergraph HD with a
n × m incidence matrix [aij ]:

aij =





1 if vi ∈ T (ej),

−1 if vi ∈ H(ej),

0 otherwise.

Figure 13 shows the same hypergraph as in Figure
1 except that all the hyperedges are now directed.

v1

v4 v3

v2

e1e2

e5

e3e4

e6

Figure 13: A directed hypergraph HD with a directed
hyperedge e6. The outdegrees of vertex v, denoted
Ψ0(v, HD) = {3, 0, 2, 1}.

And its incidence matrix is given by

A =

e1 e2 e3 e4 e5 e6

v1 1 1 0 0 0 1
v2 0 0 −1 −1 0 0
v3 −1 0 1 0 1 −1
v4 0 −1 0 1 −1 −1

In this figure, the directed hyperedge e6 can be
considered that a part of hyperarc v1 → v3 is an email
message from v1 “To:” v3 and the other part v1 → v4

is the same message from v1 “Cc:” or “Bcc” to v4. In
this sense, we call this graph a categorically-weighted

directed hypergraph. That is, a hyperarc is still ei =
(H, T ), but now T ⊆ V ×W , where W = {1, · · · , K} is
a category set.

A.2 Scan Statistics on Directed Hypergraph

Our definitions of statistics for a directed hypergraph
are equivalent to the ones for a hypergraph as men-
tioned in Section 2.2 except that Ψ0(v, HD) is called an
outdegree of vertex v and is defined as the number of 1’s
in the corresponding row of the incidence matrix. For
example, the outdegrees of the directed hypergraph in
Figure 13 are {3, 0, 2, 1}.
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